Avro to Hbase using Apache Beam
這邊使用 python sdk 串 Google DataFlow,下面介紹相關概念
概念介紹
Apache Beam
前身是 Google DataFlow,是一套用來執行batch/streaming data-parallel processing 的 pipeline,在 Embarrassingly Parallel (資料可以良好的被拆分成多個組合)的資料處理任務很好用。
目前提供分散式的後端支援:
- Apache Apex
- Apache Flink
- Apache Samza
- Apache Spark
- Google Cloud Dataflow
- Hazelcast Jet
以及三種 sdk:Java、Python、GO
Programing concept
- Pipeline:單一 task 的稱呼,包含 reading => transforming => writing 的一系列動作
- PCollection:每個 job 處理的 data set的稱呼,有
bounded
(batch) 跟unbounded
(streaming) 的分別 - PTransform: 表示 pipeline 中一個 job 的處理流程(步驟),包含1~n個 PCollection 作為 input,0~n 個 PCollection 作為 output
一個最單純的 pipeline 用圖形表示如下
- Transforms
有幾種類型如下
name describe ParDo Use for general parallel processing, 需搭配 DoFn
使用GroupByKey Processing collections of key-value pairs CoGroupByKey Join two or more key-value PCollections that have same key type, 用再多來源在描述同一件事情時 Combine Combining collections of elements or values in your data, 使用時必須要提供 combine function Flatten Merges multiple PCollection objects into a single logical PCollection, 用在相同 data type 的 PCollections Partition Splits a single PCollection into a fixed number of smaller collections, 用在相同 data type 的 PCollections - Basic requirements
- Your function object must be serializable.
- Your function object must be thread-compatible, and be aware that the Beam SDKs are not thread-safe.
這邊簡單寫到這,官方文件寫的蠻好懂的,有空可以去細讀
Hbase
一個開源版的分散式資料庫,理論基礎為 BigTable 又可稱為開源版的 BigTable,在 Hadoop ecosystem 裡面擔任 data storage 的角色,使用 HDFS 實現 fault tolerance
- 與 RDBMS 的比較
HBase RDBMS HBase is schema-less, it doesn’t have the concept of fixed columns schema; defines only column families. An RDBMS is governed by its schema, which describes the whole structure of tables. It is built for wide tables. HBase is horizontally scalable. It is thin and built for small tables. Hard to scale. No transactions are there in HBase. RDBMS is transactional. It has de-normalized data. It will have normalized data. It is good for semi-structured as well as structured data. It is good for structured data. - 與 HDFS 的關係
HDFS HBase HDFS is a distributed file system suitable for storing large files. HBase is a database built on top of the HDFS. HDFS does not support fast individual record lookups. HBase provides fast lookups for larger tables. It provides high latency batch processing; no concept of batch processing. It provides low latency access to single rows from billions of records (Random access). It provides only sequential access of data. HBase internally uses Hash tables and provides random access, and it stores the data in indexed HDFS files for faster lookups.
Data model terminology
term | description |
---|---|
table | 由多個 row 組成 |
row | 由row key + column family 組成,依照字母排序,設計row key應盡量讓相似的 pattern 放一起 |
column | 由 column qualifier 與 column family 組成, 使用 colon character 做定界符號 |
column family | 物理上將 column 分群,因此在create table時須先設定且不易修改,每個 row 都有相同的 column family,但不一定每個 column 都會有資料(sparse) |
column qualifier | 提供 column family index 的基礎,可以後設但不能輕易修改 |
cell | 一個資料源的最小單位(atom),預設保留 3 個版本,column family + column qualifier + row + value + timestamp |
timestamp | 作為版本識別使用,不指定的話使用當下時間,讀取時預設抓取最新版本 |
Running mode
- standalone
- default mode
- run on local filesystem
- No HDFS
- HMaster daemon only
- Never use on production
- Single node Single process
- pseudo distributed
- Use HDFS or local filesystem
- Single node Multi process
- Recommend to use on production
- fully distributed
- Use only HDFS
- cluster
- Best way to use on production
安裝可參考我之前的記錄
Avro
由 hadoop 之父創造的一種檔案格式,由於是 language-neutral 因此可以被多種語言處理,廣泛被用於 hadoop 體系,是一種效率很高的檔案格式
Code
Reference
發佈時間
2020-6-11