[推薦] Twitter 推薦演算法總覽

twitter 在愚人節前夕開源了他的推薦演算法 source code,可以看到他們是如何運作的

Source

https://www.youtube.com/watch?v=a8wCny94-_U 12:30

https://github.com/twitter/the-algorithm

Summary

整體來說跟其他 social network recommendation engine 差不多

想像一個訊息漏斗,由廣到深可以分為三層

  1. source relevant tweets: 分為 in-network(things you follow) 和 out-of-network(推薦)
    1. 50% in network
    2. 15% social graph: 有興趣的主題或是有互動過的用戶 overlap,不會有突破同溫層的情況
    3. 35% embedding space: 主動關注過的主題或標籤組成中推薦
  2. tweets are ranked: 針對每個 tweet 都依序詢問特定問題,increasing scores
    1. does this user interact with the author a lot?
    2. has the user seen a lot of this author recently?
    3. how much interest does the user have in this type of content?
    4. is the author a twitter blue subscriber?
    5. is the author Elon Musk?
  3. filter out specific preference: 你的 twitter 首頁呈現的結果,decreasing scores
    1. blocked, muted, nsfw filter
    2. 避免看到太多同個 author 的 tweet
    3. 多媒體(text, image…)平均呈現
cmd + /